Mapping the fluorophilicity of a hydrophobic pocket: synthesis and biological evaluation of tricyclic thrombin inhibitors directing fluorinated alkyl groups into the p pocket.
نویسندگان
چکیده
In the completion of our fluorine scan of tricyclic inhibitors to map the fluorophilicity/fluorophobicity of the thrombin active site, a series of 11 new ligands featuring alkyl, alkenyl, and fluoroalkyl groups was prepared to explore fluorine effects on binding into the hydrophobic proximal (P) pocket, lined by Tyr 60A and Trp 60D, His 57, and Leu 99. The synthesis of the tricyclic scaffolds was based on the 1,3-dipolar cycloaddition of azomethine ylides, derived from L-proline and 4-bromobenzaldehyde, with N-(4-fluorobenzyl)maleimide. Introduction of alkyl, alkenyl, and partially fluorinated alkyl residues was achieved upon substitution of a sulfonyl group by mixed Mg/Zn organometallics followed by oxidation/deoxyfluorination, as well as oxidation/reduction/deoxyfluorination sequences. In contrast, the incorporation of perfluoroalkyl groups required a stereoselective nucleophilic addition reaction at the "upper" carbonyl group of the tricycles, thereby yielding scaffolds with an additional OH, F, or OMe group, respectively. All newly prepared inhibitors showed potent biological activity, with inhibitory constants (K(i) values) in the range of 0.008-0.163 microM. The X-ray crystal structure of a protein-ligand complex revealed the exact positioning of a difluoromethyl substituent in the tight P pocket. Fluorophilic characteristics are attributed to this hydrophobic pocket, although the potency of the inhibitors was found to be modulated by steric rather than electronic factors.
منابع مشابه
Design, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase
Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted py...
متن کاملDesign, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase
Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted py...
متن کاملDesign, Synthesis and Biological Evaluation of4-(Imidazolylmethyl)-2-(4-methylsulfonyl phenyl)-Quinoline Derivatives as Selective COX-2 Inhibitors and In-vitro Anti-breast Cancer Agents
A new group of 4-(Imidazolylmethyl) quinoline derivatives possessing a methylsulfonyl COX-2 pharmacophore at the para position of the C-2 phenyl ring were designed and synthesized as selective COX-2 inhibitors and in-vitro anti breast cancer agents. In-vitro COX-1 and COX-2 inhibition studies showed that all the compounds were potent and selective inhibitors of the COX-2 isozyme with IC50 value...
متن کاملDesign, Synthesis and Biological Evaluation of4-(Imidazolylmethyl)-2-(4-methylsulfonyl phenyl)-Quinoline Derivatives as Selective COX-2 Inhibitors and In-vitro Anti-breast Cancer Agents
A new group of 4-(Imidazolylmethyl) quinoline derivatives possessing a methylsulfonyl COX-2 pharmacophore at the para position of the C-2 phenyl ring were designed and synthesized as selective COX-2 inhibitors and in-vitro anti breast cancer agents. In-vitro COX-1 and COX-2 inhibition studies showed that all the compounds were potent and selective inhibitors of the COX-2 isozyme with IC50 value...
متن کاملDesign, Synthesis and Biological Evaluation of new 1,4-Dihydropyridine (DHP) Derivatives as Selective Cyclooxygenase-2 Inhibitors
As a continuous research for discovery of new COX-2 inhibitors, chemical synthesis, in vitro biological activity and molecular docking study of anew group of 1,4-dihydropyridine (DHP) derivatives were presented. Novel synthesized compounds possessing a COX-2 SO2Me pharmacophore at the para position of C-4 phenyl ring, different hydrophobic groups (R1) at C-2 position and alkoxycarbonyl groups (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ChemMedChem
دوره 1 11 شماره
صفحات -
تاریخ انتشار 2006